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Abstract
We show that the correlated stochastic fluctuation of the friction coefficient can
give rise to long-range directional motion of a particle performing a Brownian
random walk in the constant landscape of a periodic potential energy. The
occurrence of this motion requires the presence of two additional independent
bodies interacting with the particle via friction and via the energy potential,
respectively, which can move relative to one another. Such a three-body system
generalizes the classical Brownian ratchet mechanism, which requires only two
interacting bodies. In particular, we describe a simple two-level model of a
fluctuating-friction molecular motor that can be solved analytically. In our
previous work (Kreuzer M, Marrucci L and Paparo D 2000 J. Nonlinear Opt.
Phys. Mater. 9 157) this model was applied, for the first time, in an effort to
understand the fundamental mechanism of the photoinduced reorientation of
dye-doped liquid crystals. Applications of the same idea to other fields such
as molecular biology and nanotechnology can be envisioned. As an example,
in this paper we work out a model of the actin–myosin system based on the
fluctuating-friction mechanism.

1. Introduction

Driven by the modern tools of molecular biology and by the opening perspectives of
nanotechnology, there is currently strong interest in achieving an understanding of all the
mechanisms by which systems at a molecular scale can efficiently convert chemical or light
energy into mechanical energy. Such systems are often called ‘molecular motors’, and are at the
root of biological processes such as muscle contraction, cell motility, and several intracellular
transport processes [1–6]. Unlike ordinary engines, these molecular motors are conceived to
work at a single temperature. Moreover they essentially exploit Brownian motion, converting
its random behaviour into an ordered directional motion by means of some physical mechanism
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related to energy dissipation. An example of such a mechanism is the so-called ‘Brownian
ratchet effect’ [7–9]. Artificial Brownian ratchets at microscopic scales have been proposed
for a variety of technological applications, and in some cases they have been experimentally
demonstrated [10–14]. Very recently, the first steps toward engineering truly molecular motors
have been taken [15, 16].

Within this field, a specific line of investigation is aimed at developing physical models
that capture the essential features of these molecular systems but that are simple enough to be
easily understood and studied [9]. Many models are focused on a very simple ideal system:
a point-like particle undergoing overdamped Brownian motion under the effect of molecular
friction and of a periodic energy potential U(x), where x is the particle coordinate. At a
given constant absolute temperature T , friction and Brownian diffusion are characterized by
a single quantity that can be taken to be the friction coefficient η or equivalently the diffusion
constant D = kT /η, where k is the Boltzmann constant. In this case, it is well known that
even if U(x) is asymmetric for x → −x, as for example in the case of a sawtooth potential, no
directional long-range motion can be induced unless the system is driven out of thermodynamic
equilibrium by some mechanism [17].

One of the simplest proposed mechanisms for inducing directional motion is a random
switching of the system between two internal states characterized by different potentials, say
U1(x) and U2(x) [18] (see also [19, 20] for a detailed two-state model of kinesin). In other
words, the particle is subject to a fluctuating potential, where the fluctuations are described as
sudden switches fromU1(x) toU2(x) and back. These switches are not completely random, but
obey stochastic laws in which detailed balance, and hence also thermodynamic equilibrium,
is broken. For example, one must assign the probability per unit time Iij (x) of having a
nonthermal forced transition from state i to state j , associated with some input of free energy.
Moreover, there is the probability per unit time of having spontaneous transitions associated
with thermal equilibrium and therefore obeying detailed balance. One may prove for this
system that the correlated energy potential fluctuations associated with the random transitions
may result in a nonzero average force F acting on the particle and therefore in its drift at a
constant average velocity v = F/η [18]. This long-range motion is the mechanical output
of the motor, whereas the (chemical or optical) free-energy input arises from the nonthermal
state transitions. The direction of this motion is dictated by the asymmetry of one or both
the potentials Ui(x). However, a directional motion can be induced also by asymmetric
transition rates [9].

The possibility of a difference between the friction coefficients (or diffusion constants)
experienced by the particle in the two internal states, i.e., η1 �= η2 (or D1 �= D2), was
considered in previous works but only with a passive role. In particular, if taken alone, this
difference cannot give rise to a nonzero average force and velocity of the motor. In other words
a fluctuation of friction in the presence of a constant force potential cannot power the motor.

In this paper we show that a stochastic fluctuation of friction induced by asymmetric
transition rates can actually give rise to a nonzero average force F . Unexpectedly, however,
this steady average force does not generate any long-range motion of the particle, i.e., v = 0.
More precisely, it can be shown that the average friction force experienced by the particle,
owing to the fluctuations in the friction coefficient, does not vanish even for v = 0. Therefore,
a balance between the average nonzero force arising from the (constant) potential U(x) and
the average friction force is established at v = 0. At first sight it seems therefore that there is
no possibility at all of obtaining motion and mechanical work out of Brownian motion with a
fluctuating friction coefficient. We show in the following that this is not completely true.

Let us consider explicitly the two ‘external’ bodies that interact with the particle and
provide respectively the potential forces and the friction forces acting on the particle. In the
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following, we call these two bodies the ‘sources’ of the potential and friction forces. Usually,
in discussing molecular motor models, these bodies are considered as large systems that do not
move. However, this picture is not always realistic. For example, in biological actin–myosin
motors the actin (‘thin’) filaments (usually considered as the source of potential forces in the
framework of these models) are displaced relative to myosin (‘thick’) filaments by the action of
many myosin motors. It is this displacement that is the actual output of the motor. Therefore,
we are led naturally to consider also the motion of these ‘large’ bodies, besides that of the
particle itself, in analysing the mechanical output of these systems. The whole motor system
must actually be seen then as a three-body dynamical system.

Now, the bodies generating the opposite friction and potential forces acting on the particle
are also, by reaction, experiencing opposite nonvanishing average forces. Therefore these
two large bodies can be set in motion relative to each other, unless they are blocked by some
constraint or they actually coincide. In other words, the motor particle undergoing Brownian
motion with a fluctuating friction coefficient can induce a long-range relative displacement of
the two bodies with which it is interacting. In the process, the particle itself may also undergo
a directional long-range displacement.

This paper is organized as follows. In the next section we describe a simple model of
a three-body system that converts chemical (or optical) free energy into mechanical work by
exploiting the Brownian motion of a particle that experiences stochastic sudden fluctuations
of its friction coefficient between two values. In section 3 we solve analytically the equations
of this system for a specific choice of the potential landscape and transition probabilities. We
also performed some numerical studies to analyse more general cases. In section 4, in order
to show how the idea of a fluctuating-friction molecular motor can be useful in the context
of biological systems, we apply our model to the actin–myosin system. Some concluding
remarks are given in section 5.

2. The model

Consider three bodies denoted as A, B, and C, corresponding to the motor active unit (the
‘particle’), the potential source, and the friction source, respectively (see figure 1). We start
working in a frame of reference R (we may consider it ‘fixed’, for the sake of simplicity) in
which C is motionless while A and B move, their motion being described by coordinates xA(t)

and xB(t). The motion of B is supposed to be deterministic, i.e., its Brownian fluctuations
are neglected, for example because it is a comparatively larger body. For the time being, we
assume that B moves at a constant velocity VB, i.e., xB = VBt . The motion of the small

large body B: potential source

large body C: friction source

body A:
Brownian particle

VBU(x)

x

Figure 1. A schematic drawing of our three-body model of a fluctuating-friction molecular motor.
The potential U(x) characterizes the interaction between body B and the particle A, where x is
their relative position. Body C interacts with the particle via friction.
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particle A is instead stochastic, due to Brownian fluctuations. Moreover, we assume that it is
overdamped, i.e., inertia of A can be neglected. Therefore, with each internal state i = 1, 2 of
the motor we may associate an evolving probability density fi(xA, t). The interaction between
A and B is described by a potential Ui(xA, xB) = Ui(xA, VBt) that is time dependent, because
B is moving. It is therefore convenient to switch to another inertial frame of reference RB

that is co-moving with B, thus introducing a new relative coordinate x = xA − xB in terms of
which the potential Ui(x) is stationary.

The stochastic dynamics of body A can then be described by the following pair of coupled
Smoluchowski equations:

∂fi

∂t
+

∂Ji

∂x
= Wi(x) (1)

where Ji(x) is the probability current in the frame RB and Wi(x) is the net rate of transitions
to state i at position x. Ji is given by

Ji = −Di

(
∂fi

∂x
+

fi

kT

∂Ui

∂x

)
− fiVB (2)

where Di = kT /ηi is the diffusion constant in state i. The first two terms in equation (2)
are the standard diffusion and drift currents, respectively. The last term appears because we
are working in a frame of reference, RB, that is moving with respect to the source of friction
(normally, overdamped Brownian motion is studied in the ‘privileged’ reference frame of the
fluid providing the friction). Formally, it can be derived starting from equations (1) written
in the fixed frame R, by applying the Galilei coordinate transformation x = xA − VBt to the
∂fi/∂t term. Physically, it describes the drift current induced by the drag force generated by
the friction source body C that—in the frame RB—is moving at constant speed −VB. This
term would arise, for example, when describing the Brownian motion of a particle in a viscous
fluid that is flowing at constant speed −VB.

For comparing the contributions of fluctuating friction and fluctuating potential, we allow
here for both of them to depend on the internal state. For the transition rates we take

W2(x) = −W1(x) = I (x)f1(x) − f2(x)

τ
(3)

with τ being the lifetime of state 2 (state 1 is assumed to be stable, while 1/τ is the rate
of spontaneous transitions 2 → 1). The latter follows from assuming that state transitions
are local, i.e., do not involve a variation of x, and thermally induced transitions from level 1
to level 2 are negligible (because the level energy difference is much larger than kT ). Note
moreover that we are assuming I (x) to depend only on the relative coordinate x = xA − xB.

Thus far we have made no hypothesis on the periodicity of U(x) and I (x). Actually,
this is not a strictly necessary condition in our model, as we will discuss later. However, we
assume in the following that the functions Ui(x) and I (x) are periodic, owing to the extended
periodic structure of body B. Denoting then by L the half-period in the variable x, we may
limit our solution to the interval x ∈ [−L,L] by imposing the periodic boundary conditions
fi(−L) = fi(L) and Ji(−L) = Ji(L). The distribution functions fi are normalized by the
condition

∑
i

∫ L

−L
fi dx = 1.

In the stationary regime, when ∂fi/∂t = 0, the condition W1 = −W2 combined with
equations (1) implies that the total current Jt = J1(x) + J2(x) is independent of x. This
first integral can be exploited to reduce equations (1) and (2) to a set of three first-order
differential equations in the unknown functions f1(x), f2(x), and J2(x), with Jt playing the
role of an eigenvalue. Then, the three remaining periodic boundary conditions together with
the normalization condition uniquely determine the unknown functions and the eigenvalue Jt .
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In this way, the problem can be easily solved numerically for any functional shape of Ui(x)

and I (x) and for a given velocity VB. For the case of piecewise-linear functions shown in
figure 2, the problem can also be solved analytically, as discussed in section 3.

x

U(x) I(x)

Figure 2. A particular choice of the potentialU(x) and transition probability I (x) that allows a fully
analytical solution of our model. Notice that, owing to the relative phase of the two functions, the
x → −x symmetry is broken. This symmetry breaking determines the direction of the long-range
motion.

Once we have solved the stationary random-walk problem, we are interested in computing
the average force FAB that B exerts on A, given by

FAB = −
∑
i

∫ L

−L

dUi

dx
fi dx (4)

and the average friction force FAC arising in the interaction with C, given by

FAC = −
∑
i

kT

Di

∫ L

−L

(Ji + fiVB) dx (5)

(the latter is easily understood by considering that Ji + fiVB is the current in the fixed frame
R, i.e., the current relative to body C). By exploiting equations (2), it is straightforward to
prove that FAB + FAC = 0, reflecting the balance of all forces acting on the element A of the
motor. Due to this balance, the particle A does not acquire any momentum (that it could not
accumulate, since its inertia is negligible). On the other hand, by interacting with B and C,
A mediates a continuous transfer of momentum from the friction source body C to the potential
source body B. This transfer is expressed by the reaction force FBA = −FAB = FAC acting on
B. In the following, for brevity, we denote the latter just by F = FBA. A convenient expression
for F , obtained from equation (5), is the following:

F(VB) = −2kT L

D1

[
Jt +

(
D1

D2
− 1

)
J̄2

]
− η̄VB (6)

where

J̄2 = 1

2L

∫ L

−L

J2(x) dx (7)

is the average current in state 2 and

η̄ = kT

∫ L

−L

(
f1(x)

D1
+

f2(x)

D2

)
dx (8)

is the average friction coefficient.
The average relative velocity v of the active element A in the frame RB can be evaluated

as v = 2LJt . If we set VB = 0 and there are no potential fluctuations, i.e., U1(x) = U2(x) =
U(x), then v = Jt = 0, for any functional form of U(x). To prove this, let us introduce the
function

g(x) = [D1f1(x) + D2f2(x)] eU(x)/kT . (9)
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The periodic boundary conditions and the periodicity of U(x) imply that g(−L) = g(L).
However, from equations (2) we find the relation

dg

dx
= −Jte

U(x)/kT (10)

which after an integration gives

Jt = (g(−L) − g(L))
/(∫ L

−L

eU(x)/kT dx

)
= 0. (11)

This means that there can be no long-range displacement of the particle A with respect to the
potential source for VB = 0, as anticipated in the introduction. From equation (6) one can see,
however, that the vanishing of Jt does not imply the vanishing of the force F if D1 �= D2,
as the average current J̄2 does not necessarily vanish for VB = 0. In fact, as illustrated
graphically in figure 3, the system may achieve a stationary nonequilibrium state in which
there is a continuous cycling between state 1, in which the particle on average moves one way,
and state 2, in which on average the particle moves the opposite way by the same amount. The
net particle displacement vanishes but, owing to the different friction coefficients in the two
states, the average friction force does not. The actual achievement of this stationary state is
proved in section 3 for the particular choice of U(x) and I (x) shown in figure 2. In general,
we found numerically that F does not vanish if the nonthermal transition probability I (x) is
described by a periodic function that is shifted with respect to the potential U(x) so that the
resulting overall transition rates Wi(x) are asymmetric. Note that if one sets VB �= 0, then
Jt �= 0, i.e., particle A will acquire a directional motion relative to the other two bodies.

x
state 1

state 2

J1

J2

F1=η1J1

F2=η2J2

Figure 3. Probability-flux loop due to state transitions and probability currents in the Brownian
motion of body A, for the case of no potential fluctuations (U1 = U2 = U(x)). The potential U(x)

and the transition probability I (x) are as in figure 2. Although the total current vanishes, because
J2 = −J1, the contribution to the total friction force F = F1 + F2 = η1J1 + η2J2 is nonzero if
η1 �= η2.

Let us now come back to body B. Thus far we have simply assumed that B is moving at
constant speed VB, and we have thus determined the average force F = F(VB) that the motor
develops on B itself. Now we can use this information to write a self-consistent equation for
the (deterministic) motion of B at steady state:

mB
dVB

dt
= F(VB) − ηpVB − Fext = 0 (12)

where ηp is an additional friction coefficient associated with the motion of body B, and Fext is
the external load. In particular, setting VB = 0 in equation (12) we obtain the ‘stalling’ force
Fext = F(0). The maximum velocity Vmax is instead obtained by solving the force-balance
equation with Fext = 0.

Note that we are assuming here that body B responds only to the average force F(VB),
and not to the instantaneous fluctuating force exchanged with A. As we said, this assumption
is justified for example if B is much larger and therefore slower moving than A, so that it
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responds only to its time-averaged motion and ignores its fast Brownian fluctuations. Another
case that justifies this approach occurs when B interacts simultaneously with many replicas of
A and therefore responds only to their total force (proportional to the average force of a single
motor). However, it should be noted also that this simplifying assumption of our model is not
essential to our main conclusions and that qualitatively similar results are to be expected when
Brownian fluctuations of B are taken into account.

One final comment is in order. At first sight, one could be led to believe that by assuming
from the start a nonzero velocity for body B we have artificially introduced a bias in the random
walk of A, and that it is only this bias that finally leads to the directional motion. That this is
not the case is proved by the fact that the internal force F(VB) does not vanish for VB = 0. It
is this force that defines the direction of long-range motion. And it is this internal force that,
if not counteracted by a stalling external load, eventually sets body B in motion.

3. Solutions

Let us now describe some specific solutions of our model. It is convenient to use dimensionless
quantities, obtained from the corresponding dimensional ones by using L,L2/D2, kT as
units of length, time, and energy, respectively. We denote a dimensionless quantity by a
tilde placed above the corresponding dimensional symbol. In particular Ĩ (x) = I (x)L2/D2,
F̃ = FL/kT , D̃1 = D1/D2, and ṼB = VBL/D2. For definiteness, let us specialize to the
case of triangular-wave potentials and square-wave transition probability shown in figure 2,
i.e., Ũi(x̃) = [2θ(x̃) − 1]ũi x̃ and Ĩ (x̃) = Ĩ0θ(x̃), where θ(x̃) is the unitary step function. In
this case all results are analytical. The general expression for F̃ is omitted here for brevity,
but we give its linear limit obtained for small excitation probability Ĩ0 and velocity ṼB. The
stalling force is

F̃ (0) = − 2

D̃1

J̃t + 2

(
1

D̃1

− 1

)
˜̄J2 (13)

with

J̃t = − Ĩ0ũd ũ
2
1e−ũ1

4�2(1 − e−ũ1)2

[
� +

cosh(ũ1 − ũ2/2) − cosh δ

(sinh δ)/(2δ)

]

˜̄J2 = − Ĩ0ũ1ũ2τ̃

4�

[
1

ũ1τ̃
+

ũ2

2
− cosh δ cosh(ũ1/2) − cosh(ũd/2)

sinh(ũ1/2)(sinh δ)/δ

]

where

ũd = ũ2 − ũ1 δ =
√
ũ2

2/4 + 1/τ̃ � = ũd ũ1 + 1/τ̃ .

For U1 = U2 and D1 �= D2 (friction fluctuations only, no potential fluctuations), J̃t = 0
and the stalling force is proportional to D̃1 − 1 = (D1 − D2)/D2. Therefore, everything else
being fixed, the direction and strength of the force and of the ensuing motion are determined by
the variation of the diffusion constant (or friction coefficient) induced by the state fluctuations.

The nonlinear behaviour of the stalling force F̃ (0) versus pumping intensity Ĩ0 and life-
time τ̃ is illustrated in figure 4. The graph shows that there is an optimal τ̃ , i.e., an optimal
ratio between the excited-state lifetime and diffusion time. This optimal value decreases
for increasing Ĩ0. This behaviour is similar to that exhibited by the fluctuating-potential
models [18].

For nonzero velocity ṼB, the (linearized) force is

F̃ (ṼB) = F̃ (0) − η̃eff ṼB (14)
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Figure 4. Stalling force F̃ (0) versus pumping intensity Ĩ0 and lifetime τ̃ (dimensionless quantities),
for ũ1 = ũ2 = 1 and D̃1 = D1/D2 = 2.

where

η̃eff = 1

D̃1

[
1 − ũ2

1e−ũ1

(1 − e−ũ1)2

]
. (15)

Therefore the maximum velocity of the motor is

Ṽmax = F̃ (0)

(η̃eff + η̃p)
. (16)

For U1 �= U2 and D1 = D2 (potential fluctuations only, no friction fluctuations), a
nonzero current J̃t is established, i.e., a long-range displacement of body A with respect to
body B occurs. If body B is also fixed (i.e., it is linked to body C), this case reduces to the
‘standard’ one discussed for example in reference [18]. The average speed of body A will then
be ṽ = 2J̃t = −D̃1F̃ (0).

An interesting difference between the two cases of fluctuating potential and fluctuating
friction is given by the behaviour of F̃ (0) for large potential energies, i.e., ũi = ui/kT � 1.
Indeed, when D1 = D2 the force shows a thermally activated behaviour, with F̃ ∼ e−ũm , where
ũm is the minimum of ũ1 and ũ2. In contrast, when D1 �= D2 and u1 = u2, a term survives
that decays only as F̃ ∼ 1/ũ1. This behaviour is evident in figure 5. It can be explained
by considering that for D1 = D2 the force is proportional to the total average current J̃t . To
contribute to J̃t the motor moving element must overcome the potential barrier by acquiring
sufficient thermal energy, and the probability for this to happen is proportional to e−ũi . In

the case of D1 �= D2, the force acquires another term proportional to the average current ˜̄J2

that need not vanish for J̃t = 0. It corresponds to a circulation of the particle that moves
preferentially forward when in state 1 and backward when in state 2. However, the motor does
not have to reach the potential maximum and therefore to be thermally activated. This cycling
between the two states and the resulting currents are shown schematically in figure 3.

4. Biological applications: actin–myosin motor

We did not develop this model having in mind a specific biological application. Nonetheless,
it is possible that basic features of some biological molecular mechanism are captured by our
model. The basic working mechanism of important biological molecular motors is still under
debate [21–24], so there is room for proposing new models and offering different perspectives



Fluctuating-friction molecular motors 10379

0 2 4 6 8 10
0

0.01

0.02

0.03

0.04

0.05

u
1

F
(0

) 
/ I

0

~

~ 
   

   
 ~

Figure 5. Stalling force F̃ (0) (linearized in Ĩ0) versus potential depth ũ1 for the two cases of
fluctuating potential (D̃1 = D1/D2 = 1 and ũ2/ũ1 = 2, solid line) and fluctuating friction
(ũ2/ũ1 = 1 and D̃1 = 2, dashed line). In both examples τ̃ = 1.

on this problem. Therefore we show in the following how our model can be applied to
describing a biological molecular motor. However, we stress that we are not attempting here
to build a ‘realistic’ model, our purpose being only to illustrate the basic idea.

To be specific, let us consider the actin–myosin II system—that is, the molecular motor
providing the chemomechanical coupling in muscle contraction. When a muscle is contracted,
thin filaments of actin and thick filaments of myosin are displaced relative to each other by
the concerted action of many myosin ‘heads’. A myosin head is a molecular unit linked to
the myosin filament through a flexible molecular ‘arm’ (or ‘neck’) and interacting via weak
intermolecular interactions with the actin filament [25, 26]. A schematic picture of the actin–
myosin system is given in figure 6.

In reference [18] the actin–myosin system is modelled by associating the myosin head
with the particle (body A), the actin filament with the source of potential (body B), and the
surrounding fluid or the actin filament itself with the friction source (body C). The myosin
filament is treated as an additional passive ‘load’ dragged on by the moving myosin head.
The potential U(x) describing the adsorption interaction of the head with the actin filament
is periodic and asymmetric reflecting the underlying periodic and asymmetric structure of the
filament. Attaching and detaching of the head to/from the actin filament are described as
sudden changes in the potential landscape.

Here we propose a different set of correspondence rules in order to apply our model to the
actin–myosin system, as shown in figure 6. We still identify the Brownian particle (body A)
with the myosin head. However, we model here the weak interaction between A and the actin
filament as molecular friction, thus identifying the actin filament with body C. In a limit case,
the low-friction state allows almost free sliding of A on C, while the high-friction state impedes
any sliding. The myosin filament plays instead the role of body B. The potential U(x) is used
here to model the deformation energy of the molecular arm connecting the myosin filament
with the head. The function U(x) therefore does not need to be periodic in this case, as
the limited range of arm deformation constrains the particle A into a single potential well.
The periodic potential formalism can be still used, however, by setting infinitely high energy
barriers at ±L.

Adenosine triphosphate (ATP) binding to the myosin head and its subsequent hydrolysis
triggers the variation of the molecular friction coefficient of the myosin head (from high to
low friction). We assume that, owing to some suitable mechanism (e.g. specific intermolecular
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VB

(a)

(b)

Actin filament (body C)

Myosin filament (body B)

Myosin head
(body A)

Lever arm

U(x)

Deformation energy vs
lever arm conformation

x

Figure 6. A schematic drawing of the actin–myosin molecular motor. Drawings (a) and (b)
refer to two different conformations of the lever arm, corresponding to different values of the
coordinate x (x > 0 in (a), x < 0 in (b)). In (a), also shown are the correspondence rules that link
our model (bodies A, B, and C) to the real system. In (b), also shown is the single-well energy
U(x) characterizing the deformation of the lever arm versus the deformation coordinate x giving
the relative positions of bodies A and B. The ‘Brownian power stroke’ occurs when the system
switches to the high-friction state when x > 0 (a) and then relaxes its deformation energy.

interactions), the molecule enzymatic activity is large only when the conformation of the
myosin arm is bent in a given direction, for example negative x (figure 6(b)); ATP binding and
hydrolysis may then occur only for x < 0. This corresponds roughly to having I (x) > 0 for
x < 0 (figure 6(b)) and I (x) = 0 for x > 0 (figure 6(a)), where the rate I is proportional to
the ATP concentration. After an average time τ , the hydrolysis reaction has gone through its
full cycle and the motor switches back to a high-friction state.

Given these correspondence rules, our model predicts a continuous directional motion of
the myosin motor (head plus filament, i.e., bodies A and B) with respect to the actin filament
(body C) (of course this is a relative motion: actually none of the three bodies can be considered
fixed). The general behaviour of the motor as a function of external load and ATP concentration
is in qualitative agreement with experimental data [27, 28].

We emphasize that no direct causal link between the ATP hydrolysis and conformational
transformations is introduced in our model; i.e., the conformational changes, described in
our model by the continuous variable x, are not chemically driven but are governed solely
by Brownian motion. The asymmetric transition rates allow the elastic energy stored during
the Brownian motion to be converted into directed long-range motion. In particular the main
‘force-generating step’ occurs when the system happens to switch back to the high-friction state
for x > 0 (figure 6(a)), relaxing then its deformation energy U by moving back to x ≈ 0. This
step may be considered a sort of ‘Brownian power stroke’. In contrast, our model assumes no
‘chemically driven power stroke’. In this sense, it differs from many other models of biological
motors. A power stroke is often modelled either as a sudden change of the elastic constant
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characterizing the potential [29], occurring as a consequence of ATP-induced state transitions,
or as free sliding on an asymmetric potential as in Brownian ratchet models [18]. On the other
hand, the force-generation mechanism of our model in the limit of very high friction in state 2
and very low friction in state 1 becomes similar to that of the old model given by Huxley [1].
A similar sort of ‘Brownian power stroke’ is assumed also in references [19,20], in connection
with the modelling of kinesin.

5. Conclusions

The model presented in this paper was actually developed for a specific application, namely to
study the recently discovered strong enhancement of the light-induced molecular reorientation
taking place in dye-doped nematic liquid crystals [30]. A more detailed treatment of our
modelling of this phenomenon has already been published elsewhere [31], and here we limit
ourselves to a brief discussion. The relationship between this optical effect and molecular
motors was first pointed out by Palffy-Muhoray and E Weinan, without introducing however
the possibility of an active role of fluctuating friction [32]. In our model, dye molecules
play the role of motor particles (body A) and the nematic molecular director plays the role
of a potential source (body B). The coordinate x is here the angle between the dye molecule
orientation and the molecular director, so the motor is a rotary one. The role of the friction
source C is played by the translational (centre-of-mass) degrees of freedom of the liquid-crystal
molecules themselves. Light powers the motor by continuously promoting internal electronic
transitions in the dye molecules, and the final output is a torque (corresponding to the force F )
acting on the molecular director and eventually causing its reorientation. There is substantial
experimental evidence [33, 34] that the rotational friction coefficients of dye molecules in the
two electronic states involved in the transitions are quite different, so the fluctuating-friction
mechanism is indeed at work. This proves that this hypothetical mechanism is actually realistic,
at least in one specific example.

In this paper, our main goal was to illustrate in a general abstract form, independent of
any specific application, the idea that a stochastic fluctuation of a kinetic coefficient, such as
friction, mobility, or diffusion constant, can be an effective mechanism for converting chemical
(or light) energy into directional motion and mechanical work at the molecular scale, at which
Brownian fluctuations dominate. The possibility of extracting work from Brownian motion
by means of a suitable modulation of kinetic properties, as opposed to equilibrium potential
forces, appears to be new, at least within the field of molecular motors.

We believe that exploitation of this concept could prove profitable in several other fields,
besides the nonlinear optics one. In particular, as discussed in section 4, many biological
motors are still waiting for a detailed modelling, and any new idea can be very useful in
the quest for complete understanding of these complex systems. Similarly, in the field of
nanotechnology, the possibility of driving transport via a suitable modulation of the microscopic
kinetic coefficients could be an interesting design concept.

In all cases, the relevance of this idea is further enhanced if one takes into account the high
structural sensitivity of kinetic coefficients occurring commonly in activated systems, where
small changes in the activation energy can lead to huge variations of the kinetic coefficients.

We close by adding that the fluctuating-friction motor idea is not limited to stochastic
fluctuations. Just as in the case of fluctuating-potential motors, a periodic modulation in time
of the friction coefficient is also expected to induce similar phenomena. The modulation period
will then have to be close to the typical diffusion time of the particle, in order to be effective,
leading to a new kind of stochastic resonance phenomenon.
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